Institut für Phytomedizin
Permanent URI for this collectionhttps://hohpublica.uni-hohenheim.de/handle/123456789/14
Browse
Browsing Institut für Phytomedizin by Journal "Agronomy"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Publication Assessment of a postharvest treatment with pyrimethanil via thermo-nebulization in controlling storage rots of apples(2021) Büchele, Felix; Neuwald, Daniel A.; Scheer, Christian; Wood, Rachael M.; Vögele, Ralf T.; Wünsche, Jens N.Apples are very susceptible to infections from various fungal pathogens during the growing season due to prolonged exposure to environmental influences in the field. Therefore, a strict and targeted fungicide strategy is essential to protect fruit and trees. Increased environmental and health concerns and pathogen resistance have resulted in a rising demand to reduce fungicide usage and residues on marketed fruit. Thus, producers must develop new plant protection strategies to conform to the legal and social demands while still offering high-quality apples. This study assessed the efficacy of a post-harvest fungicide treatment with pyrimethanil via thermo-nebulization for controlling storage rots and compared the results to those of standard pre-harvest fungicide strategies. The results showed that a single post-harvest application of pyrimethanil successfully controlled storage rots and is comparable to strategies using multiple pre-harvest fungicide applications. The control of fungal rot was sustained even after 5 months of storage and 2 weeks of shelf life. Thermo-nebulization into the storage facility allowed for a lower dosage of fungicide to be used compared to pre-harvest applications, while still maintaining optimal rot control. Residue analyses showed that the post-harvest fungicide treatment did not exceed legal or retailer’s standards.Publication Exploring the effects of different stubble tillage practices and glyphosate application combined with the new soil residual herbicide cinmethylin against Alopecurus myosuroides Huds. in winter wheat(2022) Messelhäuser, Miriam Hannah; Saile, Marcus; Sievernich, Bernd; Gerhards, RolandEffective control of Alopecurus myosuroides Huds. (blackgrass) solely with a chemical treatment is not guaranteed anymore because populations exhibit resistance to almost all herbicide modes of action. Integrated weed management (IWM) against blackgrass is necessary to maintain high weed control efficacies in winter cereals. Four field experiments were conducted in Southwest Germany from 2018 to 2020 to control A. myosuroides with a combination of cultural and chemical methods. Stubble treatments, including flat, deep and inversion soil tillage; false seedbed preparation and glyphosate use, were combined with the application of the new pre-emergence herbicide cinmethylin in two rates in winter wheat. Average densities of A. myosuroides in the untreated control plots were up to 505 plants m−2. The combination of different stubble management strategies and the pre-emergence herbicide cinmethylin controlled 86–97% of A. myosuroides plants at the low rate and 95–100% at the high rate until 120 days after sowing. The different stubble tillage practices varied in their efficacy between trials and years. Most effective and consistent were pre-sowing glyphosate application on the stubble and stale seedbed preparation with a disc harrow. Stubble treatments increased winter wheat density in the first year but had no effect on crop density in the second year. Pre-emergence application of cinmethylin did not reduce winter wheat densities. Multiple tactics of weed control, including stubble treatments and pre-emergence application of cinmethylin, provided higher and more consistent control of A. myosuroides. Integration of cultural weed management could prevent the herbicide resistance development.Publication Mechanical weed control: Sensor-based inter-row hoeing in sugar beet (Beta vulgaris L.) in the Transylvanian depression(2024) Parasca, Sergiu Cioca; Spaeth, Michael; Rusu, Teodor; Bogdan, IleanaPrecision agriculture is about applying solutions that serve to obtain a high yield from the optimization of resources and the development of technologies based on the collection and use of precise data. Precision agriculture, including camera-guided row detection and hydraulic steering, is often used as an alternative because crop damage can be decreased and driving speed can be increased, comparable to herbicide applications. The effects of different approaches, such as uncontrolled (UC), mechanical weed control (MWC), herbicide weed control (HWC), and mechanical + herbicide control (MWC + HWC), on weed density and yield of sugar beet were tested and evaluated in two trials (2021 and 2022) in South Transylvania Depression at the tested intervals BBCH 19 and 31. Weed control efficacy (WCE) depends on the emergence of the weeds and a good timing of weed controls in all the trials and methods, though the highest yield of sugar beet roots was recorded in the treatment MWC + HWC, with an increase up to 12–15% (56.48 t ha−1) yield from HWC (50.22 t ha−1) and a yield increase of more than 35–40% than MWC (42.34 t ha−1). Our trials show that it is possible to increase yield and have fewer chemical applications with the introduction of new precision technologies in agriculture, including sensor-guided mechanical controls.Publication Precision chemical weed management strategies: A review and a design of a new CNN-based modular spot sprayer(2022) Allmendinger, Alicia; Spaeth, Michael; Saile, Marcus; Peteinatos, Gerassimos G.; Gerhards, RolandSite-specific weed control offers a great potential for herbicide savings in agricultural crops without causing yield losses and additional weed management costs in the following years. Therefore, precision weed management is an efficient tool to meet the EU targets for pesticide reduction. This review summarizes different commercial technologies and prototypes for precision patch spraying and spot spraying. All the presented technologies have in common that they consist of three essential parts. (1) Sensors and classifiers for weed/crop detection, (2) Decision algorithms to decide whether weed control is needed and to determine a suitable type and rate of herbicide. Usually, decision algorithms are installed on a controller and (3) a precise sprayer with boom section control or single nozzle control. One point that differs between some of the techniques is the way the decision algorithms classify. They are based on different approaches. Green vegetation can be differentiated from soil and crop residues based on spectral information in the visible and near-infrared wavebands (“Green on Brown”). Those sensors can be applied for real-time on/off control of single nozzles to control weeds before sowing after conservation tillage and in the inter-row area of crops. More sophisticated imaging algorithms are used to classify weeds in crops (“Green on Green”). This paper will focus on Convolutional Neural Networks (CNN) for plant species identification. Alternatively, the position of each crop can be recorded during sowing/planting and afterward herbicides can be targeted to single weeds or larger patches of weeds if the economic weed threshold is exceeded. With a standardized protocol of data communication between sensor, controller and sprayer, the user can combine different sensors with different sprayers. In this review, an ISOBUS communication protocol is presented for a spot sprayer. Precision chemical weed control can be realized with tractor-mounted sprayers and autonomous robots. Commercial systems for both classes will be introduced and their economic and environmental benefits and limitations will be highlighted. Farmers ask for robust systems with less need for maintenance and flexible application in different crops.