Institut für Kulturpflanzenwissenschaften
Permanent URI for this collectionhttps://hohpublica.uni-hohenheim.de/handle/123456789/12
Browse
Browsing Institut für Kulturpflanzenwissenschaften by Journal "Food and Energy Security"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Publication Adapting wheat production to global warming in West Asia: facultative wheat outperforms winter and spring wheat at conventional nitrogen levels(2025) Yousefi, Afsaneh; Koocheki, Alireza; Mahallati, Mehdi Nassiri; Khorramdel, Soroor; Trenz, Jonas; Malakshahi Kurdestani, Ali; Ludewig, Uwe; Maywald, Niels Julian; Yousefi, Afsaneh; Department of Nutritional Crop Physiology, University of Hohenheim, Stuttgart, Germany; Koocheki, Alireza; Department of Agrotechnology, Ferdowsi University of Mashhad, Mashhad, Iran; Mahallati, Mehdi Nassiri; Department of Agrotechnology, Ferdowsi University of Mashhad, Mashhad, Iran; Khorramdel, Soroor; Department of Agrotechnology, Ferdowsi University of Mashhad, Mashhad, Iran; Trenz, Jonas; Department of Agronomy, University of Hohenheim, Stuttgart, Germany; Malakshahi Kurdestani, Ali; Department of Fertilization and Soil Matter Dynamics, University of Hohenheim, Stuttgart, Germany; Ludewig, Uwe; Department of Nutritional Crop Physiology, University of Hohenheim, Stuttgart, Germany; Maywald, Niels Julian; Department of Nutritional Crop Physiology, University of Hohenheim, Stuttgart, GermanyGlobal warming and weather anomalies pose significant threats to cereal production in West Asia. Winter wheat, which requires vernalization to trigger reproductive growth, is particularly vulnerable to heat, while spring wheat faces limitations due to short and hot vegetation periods. Facultative wheat, which does not require vernalization and can be planted in either fall or spring, offers potential flexibility and resilience to fluctuating temperatures. This study aimed to evaluate the development and grain yield of facultative, spring, and winter wheat varieties under different nitrogen fertilization rates in current climate conditions. Facultative wheat, grown as either facultative winter (FWW) or facultative spring (FSW), along with winter (WW) and spring wheat (SW) varieties, was cultivated over two consecutive seasons (2020–2022) at Ferdowsi University of Mashhad, Iran. Developmental stages were monitored, and grain yield, protein, and nutrient concentrations were measured at four nitrogen levels (0, 100, 200, and 300 kg N ha −1 ) in both shoots and grains. Crop modeling under the RCP 8.5 climate scenario supported the experiments and projections. Facultative wheat sown in autumn exhibited a shorter tillering stage and a longer early reproductive stage compared to winter wheat. While nitrogen fertilization delayed development, it significantly increased yield. Facultative wheat achieved higher grain yields at conventional nitrogen levels (100–200 kg N ha −1 ). Additionally, increasing nitrogen fertilization improved grain protein and nutrient concentrations (N, P, and K). Crop modeling indicated that facultative varieties sown in winter could offer greater yield stability and might benefit from a more consistent phenological development. Overall, facultative wheat performed better at conventional nitrogen levels, highlighting its potential in a changing climate in West Asia. Optimizing sowing dates and nitrogen fertilization could help mitigate some of the negative effects of rising temperatures, enhancing wheat resilience and productivity.Publication Chloride application enhances photosynthesis and facilitates nitrate translocation while driving chloride translocation into roots(2025) Wei, Guanghui; Zhang, Xudong; Franzisky, Bastian L.; Geilfus, Christoph‐Martin; Zörb, Christian; Wei, Guanghui; Institute of Crop Science, Quality of Plant Products, University of Hohenheim, Stuttgart, Germany; Zhang, Xudong; Institute of Crop Science, Quality of Plant Products, University of Hohenheim, Stuttgart, Germany; Franzisky, Bastian L.; Department of Soil Science and Plant Nutrition, Hochschule Geisenheim University, Geisenheim, Germany; Geilfus, Christoph‐Martin; Department of Soil Science and Plant Nutrition, Hochschule Geisenheim University, Geisenheim, Germany; Zörb, Christian; Institute of Crop Science, Quality of Plant Products, University of Hohenheim, Stuttgart, GermanyChloride and nitrate are essential mineral elements for crop growth. Due to their similar physical and electrochemical properties, their uptake and translocation interact antagonistically. This suggests that applying chloride to the leaf canopy during the late grain‐filling stage of cereals might enhance nitrate use efficiency. Hence, it remains uncertain whether foliar‐applied chloride at the late growth stage stimulates nitrate translocation from mature to younger leaves. To explore this possibility, two contrasting faba bean varieties were grown in a climate‐controlled chamber. Nitrate concentrations of approximately 50 and 93 μg mg FW −1 , respectively, were established in leaves by depleting nitrogen in the rooting medium. Based on these two nitrate concentrations in mature leaves, chloride was applied to the leaf canopy. Measurements of biomass, photosynthesis, and nitrate and chloride concentrations in both young and mature leaves revealed that chloride foliar application raised nitrate levels in younger leaves from 7.1 to 9.5 μmol g FW −1 and boosted photosynthesis by approximately 35%. However, one of the two faba bean varieties did not respond significantly to the chloride foliar application. These findings indicate that chloride application facilitates nitrate translocation from mature to younger leaves, potentially improving grain nitrogen supply. As a result, nitrate use efficiency might be increased by chloride application during late growth stages, although this effect is genotype‐dependent.