Institut für Agrartechnik
Permanent URI for this collectionhttps://hohpublica.uni-hohenheim.de/handle/123456789/19
Browse
Browsing Institut für Agrartechnik by Classification "660"
Now showing 1 - 12 of 12
- Results Per Page
- Sort Options
Publication Challenges of green production of 2,5‐furandicarboxylic acid from bio‐derived 5‐hydroxymethylfurfural: Overcoming deactivation by concomitant amino acids(2022) Neukum, Dominik; Baumgarten, Lorena; Wüst, Dominik; Sarma, Bidyut Bikash; Saraçi, Erisa; Kruse, Andrea; Grunwaldt, Jan‐DierkThe oxidation of 5‐hydroxymethylfurfural (HMF) to 2,5‐furandicarboxylic acid (FDCA) is highly attractive as FDCA is considered as substitute for the petrochemically derived terephthalic acid. There are only few reports on the direct use of unrefined HMF solutions from biomass resources and the influence of remaining constituents on the catalytic processes. In this work, the oxidation of HMF in a solution as obtained from hydrolysis and dehydration of saccharides in chicory roots was investigated without intermediate purification steps. The amount of base added to the solution was critical to increase the FDCA yield. Catalyst deactivation occurred and was attributed to poisoning by amino acids from the bio‐source. A strong influence of amino acids on the catalytic activity was found for all supported Au, Pt, Pd, and Ru catalysts. A supported AuPd(2 : 1)/C alloy catalyst exhibited both superior catalytic activity and higher stability against deactivation by the critical amino acids.Publication Characteristics and anaerobic co-digestion of press water from wood fuel preparation and digested sewage sludge(2022) Sailer, Gregor; Empl, Florian; Kuptz, Daniel; Silberhorn, Martin; Ludewig, Darwin; Lesche, Simon; Pelz, Stefan; Müller, JoachimTechnical drying of harvested wood fuels is heat and energy consuming, while natural pre-drying in the forest, e.g., in stacks or storage piles, is accompanied by energy losses through natural degradation processes. Dewatering of energy wood by mechanical pressing is an innovative method to reduce the moisture content prior to thermal drying while producing press waters (PW, also referred to as wood juice) as a by-product. To date, the characteristics and utilization potentials of PW are largely unknown. In this study, three different spruce- and poplar-based PW were analyzed for their characteristics such as dry matter (DM), organic dry matter (oDM) concentration, pH-value, element concentration or chemical compounds. Additionally, they were used for anaerobic digestion (AD) experiments with digested sewage sludge (DSS) serving as inoculum. The fresh matter-based DM concentrations of the PW were between 0.4 and 3.2%, while oDM concentrations were between 87 and 89%DM. The spruce-based PW were characterized by lower pH-values of approx. 4.4, while the poplar-based PW was measured at pH 8. In the AD experiments, DSS alone (blank variant) achieved a specific methane yield of 95 ± 26 mL/goDM, while the mixture of spruce-based PW and DSS achieved up to 160 ± 12 mL/goDM, respectively. With further research, PW from wood fuel preparation offer the potential to be a suitable co-substrate or supplement for AD processes.Publication Continuous synthesis of 5‐hydroxymethylfurfural from biomass in on‐farm biorefinery(2022) Świątek, Katarzyna; Olszewski, Maciej P.; Kruse, Andrea5‐hydroxymethylfurfural (HMF) is the object of extensive research in recent times. The challenge in the industrial production of HMF is the choice of cheap, hexose feedstock. This study compares continuous HMF synthesis from hexoses—fructose and glucose, and biomass—Miscanthus × giganteus and chicory roots. The experiments were conducted in technical‐scale biorefinery (TRL 6/7). In the first stage, optimal conditions for the production of HMF from hexoses were selected using sulfuric acid as a catalyst in an aqueous medium. The following conditions were chosen for fructose: temperature of 200°C, the reaction time of 18 min, and pH = 2, and for glucose: 210°C, 18 min, and pH = 3. Under these conditions, the HMF yield was 56.5 mol% (39.6 wt.%) from fructose and 18.1 mol% (12.6 wt.%) from glucose. From the biomass, the HMF yields were 36.7 and 16.2 wt.% for miscanthus and chicory roots, respectively. Some results from the conversion of biomass solutions are unexpected and show a need for further investigations. This work has demonstrated the capacity to produce HMF from biomass as part of an environmentally friendly process in a biorefinery. Further research in this field and process optimization will be a step forward in the sustainable production of bioplastics.Publication Coupled biogas and fiber production from agricultural residues and energy crops with steam explosion treatment(2023) Hülsemann, Benedikt; Baumgart, Marian; Lenz, Leonhard; Elviliana,; Föllmer, Marie; Sailer, Gregor; Dinkler, Konstantin; Oechsner, HansThe global demand for packaging materials and energy is constantly increasing, requiring the exploration of new concepts. In this work, we presented a bioeconomic concept that uses steam explosion and phase separation to simultaneously generate fibers for the packaging industry and biogas substrate for the energy sector. The concept focused on fiber-rich residues and fiber-rich ecological energy crops from agriculture. Feasibility of the concept in the laboratory using feedstocks, including Sylvatic silphia silage, Nettle silage, Miscanthus, Apple pomace, Alfalfa stalks, and Flax shives was confirmed. Our results showed that we were able to separate up to 26.2% of the methane potential while always extracting a smaller percentage of up to 17.3% of organic dry matter (ODM). Specific methane yields of 297–486 LCH4 kgODM−1 in the liquid and 100–286 LCH4 kgODM−1 in the solid phase were obtained. The solid phases had high water absorption capacities of 216–504% due to the steam explosion, while the particle size was not significantly affected. The concept showed high potential, especially for undried feedstock.Publication Drying behavior and curcuminoids changes in turmeric slices during drying under simulated solar radiation as influenced by different transparent cover materials(2022) Komonsing, Nilobon; Reyer, Sebastian; Khuwijitjaru, Pramote; Mahayothee, Busarakorn; Müller, JoachimDried turmeric is used as a spice and traditional medicine. The common drying methods for turmeric (Curcuma longa L.) are sun drying and solar drying. In this study, turmeric slices with a thickness of 2 mm were dried at 40, 50, 60, and 70 °C in a laboratory hot-air dryer with a simulated solar radiation applied through transparent polycarbonate cover (UV impermeable) and PMMA cover (UV permeable). Air velocity and relative humidity of drying air were fixed at 1.0 M·s−1 and 25 g H2O kg−1 dry air, respectively. Light significantly increased the sample temperature under both covers. Page was the best model to predict the drying characteristics of turmeric slices. Drying rate correlated with the effective moisture diffusivity, which increased at higher temperature. The hue angle (h°) of turmeric was distinctly lower at 70 °C under both covers. The dried products were of intensive orange color. Curcumin, demethoxycurcumin, and total curcuminoids were affected by the cumulated thermal load (CTL). The lowest curcumin content was found at 40 °C under PMMA (highest CTL). The optimum drying condition was 70 °C under polycarbonate cover due to shorter drying time and better preservation of color and curcuminoids in the dried product.Publication Effect of packaging and storage conditions on the pasting and functional properties of pretreated yellow-fleshed cassava flour(2024) Ekeledo, Esther; Abass, Adebayo; Müller, JoachimCassava is highly susceptible to post harvest physiological deterioration which makes it necessary to initiate processing so as to extend the shelf life. In order to improve and enhance the nutritional characteristics of the processed cassava flour, this research was carried out so as to evaluate the adequate packaging materials and storage conditions necessary for safe storage and good flour quality. Pasting properties of food/flour is an indication of the different applicability of starch-based food ingredients in product development. The effect of packaging materials (cylindric polyvinyl containers and aluminum ziplock pouch bags) on quality attributes of pretreated yellow-fleshed cassava flour (YFCF) samples stored in two storage conditions a (cooling chamber at 5 ◦ C and 30 % relative humidity and; in a climate chamber at 30 ◦C and 50 % relative humidity) was investigated for 8 weeks. Flour samples from each package type were evaluated for water absorption capacity, pasting and oil absorption capacity fortnightly. The treated initial flour sample before storage-sulfured (BSS) had the highest peak viscosity (891 RVU). The low peak time at the end of storage in non-sulfured flours packed in aluminum pouch bags and stored at 5 ◦C is an evidence of time and energy saving capacity. The water absorption capacity of non-sulfured flour samples packed in cylindric polyvinyl containers and the sulfured flour sample packed in an aluminum pouch bag at 30 ◦C increased with storage duration. The aluminum ziplock pouch bags showed excellent storage quality and retained better pasting property. The climatic storage condition revealed better keeping quality. The use of sodium metabisulphite revealed its suitability as a pretreatment tool.Publication Evaluation of the char formation during the hydrothermal treatment of wooden balls(2023) Pfersich, Jens; Arauzo, Pablo J.; Modugno, Pierpaolo; Titirici, Maria‐Magdalene; Kruse, AndreaWith wooden balls, a visualization of the hydrothermal carbonization to show the progress of the conversion to char is presented. In the present study, the balls represent the particles of biomass to investigate the differences in conversion outside and inside of biomass particles, during hydrothermal carbonization. A special focus is on hydrochar and pyrochar formation. The wooden balls are treated in subcritical water at 220 °C for holding times between 0 and 960 min. Even after 960 min, hydrolysis of the original biomass is incomplete as cellulose and hemicellulose are linked by lignin, inhibiting the reaction with water. Moreover, two different pathways of char production can be observed. Inside of the wooden ball pyrochar is formed as any water got that deep in, on the surface hydrochar is fixed, originated from the surrounding liquid. On the ground of the HTC reactor, a thin, brittle precipitate of likely hydrochar or humins can be found either from the precipitation of loosely attached compounds on the surface of the biomass or direct precipitation from the liquid.Publication Extraction of common microalgae by liquefied dimethyl ether: Influence of species and pretreatment on oil yields and composition(2020) Bauer, Manuel C.; Konnerth, Philipp; Kruse, AndreaLiquefied dimethyl ether (DME) is regarded as a promising, green solvent for biomass lipid extractions. It is non-toxic, applicable to wet feedstocks, and allows easy product separation by pressure reduction. Yet, knowledge about its usability in combination with oleaginous microalgae is limited. In the current work, four common microalgae and cyanobacteria species were used to study DME extraction characteristics: Arthrospira platensis, Nannochloropsis gaditana, Phaeodactylum tricornutum, and Scenedesmus almeriensis. Dried samples were subjected to a batch DME extraction and compared to a standard chloroform/methanol procedure. To evaluate the influence of pretreatment, particle size distributions of two different milling sequences (knife- and cryo-milling) and the resulting effects on DME extraction and oil composition were addressed. Additionally, an algae washing procedure was tested. DME extractions resulted in oil yields of 0.5–2.7% of dry mass (equal to 5–19% of total lipids) without further pretreatment. Cryo-milling reduced median particle sizes by 25–87% and simultaneously increased lipid yields to 1.7–5.6% of dry mass (17–50% of total lipids). Phaeodactylum tricornutum showed the highest extraction efficiency with DME, combined with a favorable fatty acid profile. Although being most affected by the additional milling pretreatment, Arthrospira platensis performed worst in both scenarios. DME extracted oils were generally characterized by enhanced contents of C14:0, C16:0, and C16:1 fatty acids. However, relative abundances were strongly influenced by the properties of the tested algae species. The additional cryo-milling pretreatment affected fatty acid compositions by increasing the shares of potentially valuable polyunsaturated fatty acids.Publication Investigating crude sesame oil sedimentation and its monitoring using Laser Backscattering Imaging (LBI)(2023) Wu, Zhangkai; Romuli, Sebastian; Intani, Kiatkamjon; Müller, JoachimSesame oil is a food and energy resource that is not used enough. Sedimentation of crude oil after pressing can remove particles and happens regardless of the producer’s intention. However, sedimentation of crude plant oil and its sensing technology are rarely studied. This research studied crude sesame oil sedimentation and monitored it with low-cost laser backscattering imaging (LBI). In the discontinuous measurement, a 30-day sedimentation was conducted with oil samples sent to the lab LBI system for image capture. A scattering spot and an increasing Tyndall effect along the light path were seen. In the continuous measurement, an LBI system was mounted on a sedimentation tank for 30 days. The sedimentation curve, scattering images, and oil properties were checked. The sedimentation speed was about −7 mm/h, then less than −2 mm/h. The image features correlated well with the sedimentation interface height (R2 = 0.97) when the height was above −100 mm. The oil-particle-related properties (ash content, phosphorus content, carbon residue, and total contamination) dropped by at least 87%, water content decreased by 90%, and the oxidation-related properties (oxidation stability, γ-tocotrienol, δ-tocopherol, γ-tocopherol, and acid value) changed less significantly. The crude sesame oil sedimentation had two stages: diluted and hindered sedimentation. This research can help improve sedimentation tank and LBI system design and prevent unwanted sedimentation.Publication Marketing strategies for cultured meat: A review(2022) Siddiqui, Shahida Anusha; Khan, Sipper; Murid, Misbah; Asif, Zarnab; Oboturova, Natalya Pavlovna; Nagdalian, Andrey Ashotovich; Blinov, Andrey Vladimirovich; Ibrahim, Salam A.; Jafari, Seid MahdiEnvironmentally intense and negative consequences relateing to conventional meat production systems have induced some actors to suggest alternative meat sources. Diseases carried by animals, human perception of cruelty to animals, and public health concerns about cardiovascular diseases have provided the basis for the development of cultured meat. The current market is influenced by many factors, including regulators, affordability, religion, and media perception. The existing cultured meat market is also regulated by legislatures, affordability, consumer religion, and the media. Consumer perception is distributed across various aspects, including ethical priorities, nutritional profile of the meat consumed, age-based acceptance, gender differentiation, political orientation, land-based attitude, education status, socioeconomic factors, and familiarity factor with the existing product in the market. Inhibiting barriers reported among consumers—including low naturalness, safety, nutritional concerns, trust, neophobia, economic, and ethical approaches—should be employed as marketing tactics directly to address their respective concerns. Tissue culture, starter cells, printing, and 3D printing are some of the methods currently being used for the production of cultured meat. Similarly, many hybrid technologies are also being used to produce meat-like products to increase consumer familiarity along and market presence. Existing research frameworks have improved the previous mindset of consumers with media coverage, educational frameworks, and the textural attributes of cultured meat. Additional benefits of CUME may include being environmentally friendly with less production of greenhouse gases. However, consumer trust, affordability, improving nutritional status, and widescale adoption are just a few of the parameters that need to be addressed to enhance consumer acceptability of these products. The aim of this article was to analyze the current state of cultured meat and the marketing content challenges and strategies used to advance public acceptance of cultured meat.Publication Process water recirculation during hydrothermal carbonization as a promising process step towards the production of nitrogen-doped carbonaceous materials(2021) Dominik, Wüst; Pablo, Arauzo; Sonja, Habicht; Fernando, Cazaña; Luca, Fiori; Andrea, KruseHydrothermal Carbonization (HTC) refers to the conversion of biogenic wastes into char-like solids with promising perspectives for application, but a process water (PW) results which is difficult to dispose untreated. Thus, a biorefinery approach including one or two recirculation steps with the additional objective of improving the physico-chemical characteristics of the solid was performed in this study. During HTC, constitutive molecules such as saccharides, proteins and lignin of Brewer’s Spent Grains decompose into hundreds of organic compounds, following complex reactions. To get deeper insights a combination of proximate, ultimate and structural analysis for solid products as well as liquid chromatography for liquid products were the choice. The main reactions could be identified by key compounds of low and high molecular weight resulting from hydrolysis, dehydration, decarboxylation, deamination as well as amide formation and condensation reactions. Their intensity was influenced by the feedwater pH and reaction temperature. Via reactions of Maillard character up to around 90% of the dissolved nitrogen of the recirculated process water at 200, 220 and 240 °C result in the formation of nitrogen containing heterocycles or rather Quartnernary nitrogen incorporated into the hydrochar (HC). Thus, already one recirculation step during HTC at 240 °C promises the fabrication of high added-value materials, i.e. nitrogen doped carbonaceous materials.Publication A proposal for evaluating the economic viability of biorefineries against petrochemical benchmarks(2024) Götz, Markus; Kruse, AndreaUsually costs of bio‐based products are compared to those of their fossil counterparts, most often made from crude oil. This paper adds new insights into this kind of comparison and provides approaches as to how future innovations in biorefineries and bio‐based chemicals can be compared to commercial fossil alternatives. The shift to alternative carbon sources will lead to higher costs in the short term. However, expected changes in the crude oil market and regulatory effects will cause rising costs of fossil chemicals in the near future. This work also provides strategies for implementing increased prices.